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APPENDIX

I. IMPLEMENTATION DETAILS

Here we lay down the details of the data collection, training,
and testing process. More technical details are given here to
illustrate our method and implementations better.

A. Shadow Hand and Parallel Gripper Teleoperate System

To adapt to Isaac Gym and our vision system, we made
certain modifications to the XML file of the Shadow Hand.
We followed [1–3], removed the entire arm part, and added
six degrees of freedom to the base mount of the Shadow Hand.
This allows it to move freely in the virtual environment with-
out depending on a base. Similarly, to obtain the rigid body
Jacobian matrices of the five fingertips of the Shadow Hand,
we added a massless rigid body to the tips of all five fingers
of the Shadow Hand. This facilitates direct inverse kinematics
calculations for the entire finger. In inverse kinematics (IK)
calculations, we employed the Damped Least Squares (DLS)
method [4, 5], this approach helps to prevent instability issues
when approaching singularity points. Additionally, the DLS
method supports real-time applications because it can provide
fast and stable solutions, which is particularly crucial for
teleoperation systems. Focusing solely on the five fingertips
and wrist is regarded as the most balanced approach between
computational efficiency and the precision required for com-
plex hand movements in real-time applications. The system
operates on a computer with an RTX 4070 graphics card and
a monitor.

To mitigate the accumulation of errors, the process involves
mapping hand motion from the real world into the virtual
environment and then comparing each action with the action
from the previous frame to calculate a delta action. The reason
for calculating delta action is to identify and apply only the
changes in movement from one frame to the next, rather than
applying the absolute positions and orientations directly. This
approach helps reduce the accumulation of errors that might
occur due to discrepancies between the real-world movements
and their representation in the simulated environment. By
focusing on the changes (delta) rather than absolute values, the
system can more accurately replicate the intended movements
in the simulator, leading to more precise and consistent control
of the shadow hand.

* denotes equal contribution
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B. Baselines

In this section, we provide the implementation details for
BC and BC-RNN models. In Behavior Cloning (BC), the
objective is to minimize E(s,a)∼D||πθ (s)− a||2. We use a 3-
layer multi-layer perception (MLP) with a ReLU activation
function. All layers are fully connected layers with 128 hidden
dimensions with a learning rate of 2 · 10−3. We also use
the AdamW [6] to be the optimizer. The training epoch in
dexterous tasks Pick-and-Place, Articulated-Manipulation, and
Tool-Use is 60,100,100 separately.

As for BC-RNN, we use an LSTM as the backbone net-
work for BC-RNN [7], which we find a slight performance
improvement compared to the vanilla RNN model. Follow-
ing [7], during the training phase, a state-action sequence
{(si,ai), · · · ,(si+T−1,ai+T−1)} of length T is sampled from the
dataset D and the network will predict the action sequence
based on the states as its input. During the inference phase
at ,ht+1 = πθ (st ,ht) where ht ,ht+1 are the hidden states. Here
we set the learning rate to be 2 ·10−3, and the training epoch
to be 60.

C. Diffusion-Model-Based Assistive Agent

The assistive agent’s noise prediction model εθ ’s backbone
network is a 4-layer multi-layer perception (MLP) with a
Softplus activation function. All layers are fully connected
layers with 128 hidden dimensions. Moreover, we set the
diffusion steps K = 50, βmin = 10−4,βmax = 0.1 in Eq. 2
with Sigmoid scheduling and use Exponential Moving Average
(EMA) to stabilize the training. The learning rate of εθ is
10−3.

II. EXPERIMENT SETUPS

A. Tasks

Dexterous Hand Pick-and-Place aims at picking an object
on the table and placing it into a container. The observation
space is 24 dimensions, including the dexterous robot hand
state (18-dim), the object’s position (3-dim), and the con-
tainer’s position (3-dim). The dexterous robot hand state is the
position of each fingertip (15-dim) and the wrist position (3-
dim). The action space is 28 dimensions, including the state
change of each joint (22-dim) and the wrist transformation
(6-dim). The object’s position is randomized for each attempt
within a 10cm×10cm square on the table.

Dexterous Hand Articulated-Manipulation aims at grasp-
ing and unscrewing the door handle to open the door. The
observation space is 32 dimensions, including the dexterous



robot hand state (18-dim), the door handle’s position (3-
dim) and quaternion (4-dim), and the door base’s position (3-
dim) and quaternion (4-dim). In contrast, the action space is
28 dimensions. The door’s position is randomized for each
attempt within a 40cm×40cm square on the floor.

Dexterous Hand Tool-Use aims at picking a hammer and
using it to drive a nail into a board. The observation space
is 32 dimensions, including the dexterous robot hand state
(18-dim), hammer’s position (3-dim) quaternion (4-dim), and
nail’s position (3-dim). At the same time, the action space
is 28 dimensions. The nail’s position is randomized for each
attempt within a 10cm×10cm square on the table.

Parallel Gripper Pick-and-Place aims at picking an object
on the table and placing it into a container. The observation
space is 27 dimensions, including the five rigid bodies of the
gripper to object distances (15-dim), the distance between left
and right grippers (3-dim), the object’s position (3-dim), the
distance between object and target (3-dim,) and the distance
between flange and target (3-dim). The action space is 8
dimensions, including the state change of each joint (7-dim)
and gripper (1-dim). The object’s position is randomized for
each attempt within a 10cm×10cm square on the table.

Parallel Gripper Articulated-Manipulation aims at picking
an object on the table and placing it into a container. The
observation space is 16 dimensions, including the five rigid
bodies of gripper to object distances (15-dim), and the distance
between object and target (1-dim). The action space is 7
dimensions, including the state change of each joint (7-dim).
The object’s position is randomized for each attempt within a
10cm×10cm square on the table.

Parallel Gripper Cube-Push aims at pushing an object on
the table to the target position. The observation space is 22
dimensions, including the three rigid bodies of the gripper
to object distances (9-dim), the flange’s position (7-dim), the
distance between object and target (3-dim,) and the distance
between flange and target (3-dim). The action space is 7
dimensions, including the state change of each joint (7-dim).
The object’s position is randomized for each attempt within a
5cm×5cm square on the table.

B. Ablation study

We implement the shared control agent with different meth-
ods like the diffusion model and BC. BC adapts a classical
way for blending policy to achieve shared control [8]. We use
it in the ablation study to blend BC policy with pure human
action to achieve shared control in Fig.1. Compared to the
classical way which explicitly averages human action ah and
agent action ar to get the shared action as, we instead use the
diffusion model, which is a popular implicit model, to blend
two actions. It models the process as the forward and reverse
process. The forward/diffuse process is about adding Gaussian
noise to human action ah, and the reverse process uses a neural
network f (·|·) to denoise ak to get the shared action as.

BC agent is trained using a specific sequence of data col-
lection and fine-tuning steps to optimize performance across
different levels of shared control. Initially, we collect data

TABLE I: Agent performance on human expert or amateur
datasets.

Dexterous Pick-and-Place Articulated-Manipulation Tool-Use
Hand Skilled Unskilled Skilled Unskilled Skilled Unskilled

BC 0.45 0.02 0.43 0.18 0.40 0.05
BC-RNN 0.41 0.05 0.62 0.04 0.27 0.05

DP 0.71 0.01 0.68 0.10 0.81 0.03

TABLE II: Ablation study on DP performance between r.

Pick-and-Place Articulated-Manipulation Tool-Use

r = 0.0 0.565 0.661 0.512
r = 0.1 0.620 0.681 0.547
r = 0.2 0.575 0.407 0.115
r = 0.3 0.435 0.216 0.029

sets of 10, 10, and 20 episodes under various task conditions.
These initial datasets are used to train a preliminary agent.
Following this initial training phase, we employ the trained
agent to assist in further data collection under three different
control ratios represented by γ values of 0.25, 0.5, and 0.75.
The data collected with the assistance of the agent under these
γ settings are then used to fine-tune the agent.

As shown in Fig.1, experiments demonstrated that the suc-
cess rate of an assistive agent based on BC is lower than that
of an agent based on diffusion models, indicating a reduced
capacity for assistance. In certain instances, the action even
becomes worse at particular control ratios.

We test the performance of training with different data
compositions. For a task, we gathered two manipulation
datasets from both skilled and unskilled human operators. We
consider operators to be skilled workers if they can practice for
more than five hours and reach a success rate and efficiency
comparable to those with assistive agents. As shown in Tab. I,
the performance of agents trained on the dataset of unskilled
operators is much lower than that on the dataset of skilled
operators. Therefore, all the human operation datasets H we
use in the main text are from skilled operators.

In our framework, r represents the modification ratio of
noise between the state and action. Specifically, during the
training, the noise added to state s satisfies εs = u · N (0,I)
while the noise added to action a satisfies εs = v · N (0,I).
Then r = u

v . We test different r as shown in Tab. II, to ensure
the best agent performance. We default to using r = 0.1 in our
model.

C. Real World Experiment

In this section, we evaluate the real-world performance of
our method. We use the setup shown in Fig.2, which includes
a Flexiv Rizon4 arm equipped with a gripper and two Intel
RealSense D435i RGB-D cameras. One camera is mounted
on the wrist of the robotic arm, while the second is positioned
on the side. One task here is to pick the red pot shown in
Fig.2 and place it onto the induction cooker.

During the real-world data collection phase, we estimate
the human hand’s pose using RGBD input. Considering the
significant difference in morphology between the human hand
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Fig. 1: Ablation on different dexterous agents trained with different compositions of data.
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Fig. 2: Realworld Pick-and-Place Experiment. The hardware
setup comprises (a) a Leap Motion camera utilized for teleop-
eration data collection, (b) a toy kitchen environment set up
for the pick-and-place task, and (c) a Flexiv Rizon4 robotic
arm equipped with a gripper and two cameras. One camera
is mounted on the wrist of the robotic arm, while the second
one is positioned on the side.

and a 7-DoF robotic arm, we chose to track the end effector’s
position by monitoring the position of the hand’s wrist. Addi-
tionally, we used the action of closing or opening the human
hand as the condition for determining whether to grasp or
release an object. This approach leverages the greater dexterity
of the human hand to enhance the control and precision of the
robotic arm. We record RGB images from two camera views,
joint poses (7-dim), gripper width (1-dim), the end effector’s
position (3-dim), and its quaternion (4-dim). The RGB images
have a size of 640×480 pixels, each episode is sampled at a
frequency of 10 Hz.

In real-world experiments, the network architecture is gen-
erally similar to the simulation environment’s. Our input has
changed from the original hand states and object states to the
position and orientation of the robot arm end effector, as well
as images from the first-person and third-person perspectives.
We made two main modifications: 1) For the images, we used
a ResNet-18 model. We used a standard ResNet-18 (without
pretraining) as the encoder with its global average pooling
replaced with a spatial softmax pooling to maintain spatial

information. 2) We deepened the layer of the neural network,
increased its hidden layer dimension, and expanded action
horizon prediction from predicting the next frame action to
predicting actions for the subsequent T frames, i.e., at+1:t+T−1
(where T = 8).

III. DISCUSSION AND LIMITATION

A. Human-Machine Interface

Our approach has demonstrated success across a diverse set
of Human Machine Interfaces(HMI), including:

Sigma.7 Teleoperation Devices: Our system has success-
fully utilized Sigma devices to achieve precise control for tasks
involving limited DoF. These devices require intricate control
and feedback mechanisms, demonstrating our interface’s ro-
bustness and effectiveness in physical UI scenarios.

RGB-D Cameras: Our system can accurately interpret
spatial environments by leveraging depth perception, making it
highly effective for freehand teleoperation. This capability lays
the foundation for handling physical UIs with equal precision.

Virtual Reality (Meta Quest3): In VR environments,
our interface provides an immersive and intuitive experi-
ence that closely mimics real-world interactions. This shows
its capability to handle complex interfaces with precision
and ease. As shown in Tab. III, we repeated the dexterous
articulated-manipulation experiment with Leap Hand [9] in a
VR environment and validated that our paradigm is applicable
across different HMIs. This demonstrates the versatility of our
approach, ensuring consistent operation across various human-
machine interfaces.

TABLE III: Articulated-Manipulation task success rate under
increasing data with Quest3.

VR Articulated-Manipulation
Dexterous BC DP

10H 0.04 0.10

10H + 10H 0.15 0.25
10H + 20H 0.26 0.26
10H + 30H 0.40 0.30

10H + 10S 0.34 0.28
10H + 20S 0.30 0.35
10H + 30S 0.44 0.63
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Fig. 3: t-SNE visualization of distributions of trajectory actions (w/ and w/o assistive agent).

B. Data Analysis

We visualize the Preference Alignment [10] for dexterous
hand articulated-manipulation task, as shown in Fig. 4. We
find that as time progresses, the preference alignment increases
across all three phases: reaching the door latch, twisting the
door latch, and pulling. This indicates a growing synchroniza-
tion between the user and the assistive agent throughout each
stage of the task. Also, the preference alignment between the
user and the assistive agent improves across different control
ratios.

We use t-SNE to visualize the distribution of trajectory
actions on different dexterous tasks, as shown in Fig. 3.
Specifically, we have reduced the trajectory of actions to
three dimensions using t-SNE, for both data collected by
human operators with and without our system. To ensure a
fair comparison, we uniformly sampled the same number of
actions across both scenarios. We find that the distribution of
the same task tends to cluster in the same space, whether with
or without an assistive agent. This indirectly demonstrates that
our system can enhance data collection speed and efficiency
without compromising data quality.

Fig. 4: The articulated-manipulation task consists of three
phases: reaching the door latch, twisting it to the correct angle,
and pulling it. We plotted the dot product between the user
input action and the assistive agent’s output action(Preference
Alignment). In the plot, the red, green, and blue lines represent
control ratios of 0.25, 0.5, and 0.75, respectively.

C. Limitations

Our current system’s task-specific assistive agent, while
effective for certain applications, does have its limitations. It
currently can not handle tasks that involve multiple subtasks
or targets that change dynamically, as these scenarios often
require more flexibility, including the ability to adjust the
control ratio throughout the sequence. To broaden the system’s
applicability, integrating large language models could also
allow it to handle a wider range of robot learning tasks by
conditioning on text input. Additionally, we think adding a
learnable control ratio adjustment mechanism, especially for
long-horizon tasks, could improve the system’s adaptability
and efficiency. We believe that our proposed joint-learning
framework has the potential to leverage more powerful multi-
task diffusion policies, allowing it to handle more complex
scenarios in future enhancements.
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